Curso de Matemáticas de Secundaria

Pedro Reina • http://pedroreina.net/cms

Licencia: CC0 1.0 Universal

Nivel 5 • Álgebra • Binomio de Newton • Teoría (03)

Enunciados

- ① Desarrolla la expresión $\left(3x^2 + \frac{2}{x}\right)^3$ y escribe el desarrollo del modo más sencillo que sea posible.
- ② Desarrolla la expresión $(1+\sqrt{2})^4$ y escribe el desarrollo del modo más sencillo que sea posible, utilizando radicales cuando sea necesario.
- 3 Calcula el coeficiente del monomio de grado 10 en el desarrollo de $(2x^2+3x)^7$.
- 4 Utilizando el binomio de Newton, expresa como una única potencia $\sum_{k=0}^{k=n} {n \choose k}$.

Resoluciones

①
$$\left(3x^2 + \frac{2}{x}\right)^3 = {3 \choose 0}(3x^2)^3 + {3 \choose 1}(3x^2)^2 \cdot \frac{2}{x} + {3 \choose 2}3x^2 \cdot \left(\frac{2}{x}\right)^2 + {3 \choose 3}\left(\frac{2}{x}\right)^3 =$$

$$= 27x^6 + 3 \cdot 9x^4 \cdot \frac{2}{x} + 3 \cdot 3x^2 \cdot \frac{4}{x^2} + \frac{8}{x^3} = 27x^6 + 54x^3 + 36 + \frac{8}{x^3}$$

Solución: $27x^6 + 54x^3 + 36 + \frac{8}{x^3}$

②
$$(1+\sqrt{2})^4 = {4 \choose 0} 1^4 + {4 \choose 1} 1^3 \cdot \sqrt{2} + {4 \choose 2} 1^2 \cdot (\sqrt{2})^2 + {4 \choose 3} 1 \cdot (\sqrt{2})^3 + {4 \choose 4} (\sqrt{2})^4 = 1 + 4\sqrt{2} + 6 \cdot 2 + 4 \cdot 2\sqrt{2} + 4 = 1 + 4\sqrt{2} + 12 + 8\sqrt{2} + 4 = 17 + 12\sqrt{2}$$

Solución: $17 + 12\sqrt{2}$

3 Sabemos que
$$(2x^2+3x)^7 = \sum_{k=0}^{k=7} {7 \choose k} (2x^2)^{7-k} (3x)^k$$

Primero hay que averiguar cuál es el valor de «k» que da como resultado un exponente de «x» igual a 10.

Calculamos el exponente de «x» que corresponde a cada valor de «k»:

$$(x^2)^{7-k} \cdot x^k = x^{2(7-k)+k} = x^{14-2k+k} = x^{14-k}$$

Para que el exponente sea 10, debe ser $14-k=10 \Rightarrow k=4$

Ahora solo falta calcular el coeficiente que corresponde a k = 4:

Coeficiente =
$$\binom{7}{4} \cdot 2^{7-4} \cdot 3^4 = 35 \cdot 2^3 \cdot 81 = 35 \cdot 8 \cdot 81 = 22680$$

Solución: 22 680

4 Observamos que $\sum_{k=0}^{k=n} \binom{n}{k}$ es el desarrollo mediante el binomio de Newton de

$$(1+1)^n$$
, por lo que $\sum_{k=0}^{k=n} {n \choose k} = (1+1)^n = 2^n$

Solución: 2ⁿ